skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Harvey, Winthrop"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Unmanned aerial vehicles (UAVs) must keep track of their location in order to maintain flight plans. Currently, this task is almost entirely performed by a combination of Inertial Measurement Units (IMUs) and reference to GNSS (Global Navigation Satellite System). Navigation by GNSS, however, is not always reliable, due to various causes both natural (reflection and blockage from objects, technical fault, inclement weather) and artificial (GPS spoofing and denial). In such GPS-denied situations, it is desirable to have additional methods for aerial geolocalization. One such method is visual geolocalization, where aircraft use their ground facing cameras to localize and navigate. The state of the art in many ground-level image processing tasks involve the use of Convolutional Neural Networks (CNNs). We present here a study of how effectively a modern CNN designed for visual classification can be applied to the problem of Absolute Visual Geolocalization (AVL, localization without a prior location estimate). An Xception based architecture is trained from scratch over a >1000 km2 section of Washington County, Arkansas to directly regress latitude and longitude from images from different orthorectified high-altitude survey flights. It achieves average localization accuracy on unseen image sets over the same region from different years and seasons with as low as 115 m average error, which localizes to 0.004% of the training area, or about 8% of the width of the 1.5 × 1.5 km input image. This demonstrates that CNNs are expressive enough to encode robust landscape information for geolocalization over large geographic areas. Furthermore, discussed are methods of providing uncertainty for CNN regression outputs, and future areas of potential improvement for use of deep neural networks in visual geolocalization. 
    more » « less